Invert a Matrix using the Woodbury Matrix Inverse Formula Identity

Previously I wrote about the LDU decomposition and the Schur complement. These can be further used to derive the Sherman–Morrison–Woodbury formula, otherwise known as the matrix inversion lemma, for inverting a matrix. As shown in the previous post, a UDL and LDU are two ways of factorizing a matrix:

\begin{pmatrix}          V_{11} & V_{12}\\          V_{21} & V_{22}\\  \end{pmatrix}=    \begin{pmatrix}          1 &    V_{12}V_{22}^{-1}\\  0      & 1\\  \end{pmatrix}  \begin{pmatrix}           V_{11.2} & 0 \\           0 & V_{22} \\   \end{pmatrix}   \begin{pmatrix}            1 & 0 \\  V_{22}^{-1}V_{21} & 1 \\  \end{pmatrix}

\begin{pmatrix}          V_{11} & V_{12}\\          V_{21} & V_{22}\\  \end{pmatrix}    =  \begin{pmatrix}          1 & 0\\          V_{21}V_{11}^{-1} & 1\\  \end{pmatrix}  \begin{pmatrix}            V_{11} & 0 \\  0 & V_{22.1} \\  \end{pmatrix}  \begin{pmatrix}            1 & V_{11}^{-1}V_{12} \\  0 & 1 \\  \end{pmatrix}
Now consider taking the inverse of the matrices above, yielding

\begin{pmatrix}          V_{11} & V_{12}\\          V_{21} & V_{22}\\  \end{pmatrix}^{-1}=  \begin{pmatrix}  1 & 0 \\  -V_{22}^{-1}V_{21} & 1 \\  \end{pmatrix}      \begin{pmatrix}           V_{11.2}^{-1} & 0 \\           0 & V_{22}^{-1} \\   \end{pmatrix}   \begin{pmatrix}          1 &   -V_{12}V_{22}^{-1}\\  0      & 1\\  \end{pmatrix}

\begin{pmatrix}          V_{11} & V_{12}\\          V_{21} & V_{22}\\  \end{pmatrix}^{-1}  =  \begin{pmatrix}  1 & -V_{11}^{-1}V_{12} \\  0 & 1 \\  \end{pmatrix}  \begin{pmatrix}      V_{11}^{-1} & 0 \\  0 & V_{22.1}^{-1} \\  \end{pmatrix}    \begin{pmatrix}          1 & 0\\          -V_{21}V_{11}^{-1} & 1\\  \end{pmatrix}
Multiplying the matrices on the RHS yields
\begin{pmatrix}          V_{11} & V_{12}\\          V_{21} & V_{22}\\  \end{pmatrix}^{-1}  =  \begin{pmatrix}  V_{11.2}^{-1} & -V_{11.2}^{-1}V_{12}V_{22}^{-1}\\  -V_{22}^{-1}V_{21}V_{11.2}^{-1} & V_{22}^{-1}+V_{22}^{-1}V_{21}V_{11.2}^{-1}V_{12}V_{22}^{-1}  \end{pmatrix}

\begin{pmatrix}          V_{11} & V_{12}\\          V_{21} & V_{22}\\  \end{pmatrix}^{-1}  =\begin{pmatrix}          V_{11}^{-1}+V_{11}^{-1}V_{12}V_{22.1}^{-1}V_{21}V_{11}^{-1} & -V_{11}^{-1}V_{12}V_{22.1}^{-1}\\          -V_{22.1}^{-1}V_{21}V_{11}^{-1} & V_{22.1}^{-1}  \end{pmatrix}
These two results can be used to form neat expressions for the inverse of a partitioned block matrix. It follows that
\begin{pmatrix}  V_{11.2}^{-1} & -V_{11.2}^{-1}V_{12}V_{22}^{-1}\\  -V_{22}^{-1}V_{21}V_{11.2}^{-1} & V_{22}^{-1}+V_{22}^{-1}V_{21}V_{11.2}^{-1}V_{12}V_{22}^{-1}  \end{pmatrix}=  \begin{pmatrix}          V_{11}^{-1}+V_{11}^{-1}V_{12}V_{22.1}^{-1}V_{21}V_{11}^{-1} & -V_{11}^{-1}V_{12}V_{22.1}^{-1}\\          -V_{22.1}^{-1}V_{21}V_{11}^{-1} & V_{22.1}^{-1}  \end{pmatrix}
The equality holds for each block or element, so two expressions can be found for the Woodbury matrix inverse formula, namely:
V_{11.2}^{-1}=V_{11}^{-1}+V_{11}^{-1}V_{12}V_{22.1}^{-1}V_{21}V_{11}^{-1}
and
V_{22.1}^{-1}=V_{22}^{-1}+V_{22}^{-1}V_{21}V_{11.2}^{-1}V_{12}V_{22}^{-1}
where the dot notation corresponds to the Schur complement i.e.
V_{11.2}=V_{11}-V_{12}V_{22}^{-1}V_{21}\\  V_{22.1}=V_{22}-V_{21}V_{11}^{-1}V_{12}\\
An application of the Woodbury matrix inverse can be found in deriving conditional distributions for multivariate normals.